……
“……你看,这样就是一个椭圆曲线了。
不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。
如果特征不等于2的话,那么仿射方程就是^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。
阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。
这是我看了很多相关理论之后才找到的方法。
这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。
右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。
接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。
只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。
不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。
整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。
才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。
毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。
他拼了命学最后也只是勉强过关,拿到了学分。
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
走过路过不要错过,进来看看吧,反正前二十章不要钱狗头。聂然出生不到一个月,被重男轻女的奶奶掐到昏迷扔到乱葬坑,又被同村聂独眼家的大黄狗叼回家,从此由聂独眼收养了。十六岁这年,聂然的亲...
养了自己十几年的父母,居然不是亲生的,而这一天,亲生父亲带着亿万家产来接自己...
末世突然来临,毫无准备的江莉就这么直面自家老父亲的死亡异变,孤立无援的她,正在恐慌当中时,无意中竟然激活了一个跟游戏似的交易平台。这一下食物不愁了,只不过这积分的收集让她有了一种捡垃圾的感觉。还有这...
...
没有傅队破不了的案,却有他撩不到的人。他追沈检察官,宝贝宝贝地撩,六年了还没追到手。他朝她走了999999步,可她连朝他动动脚都不愿意。当有一天,他关闭了只属于她的鱼塘。她急了!!!琛哥,你的鱼塘是不是漏了??傅琛抱歉,休渔期,不捕鱼了。沈晚舟后来,鱼儿主动跳上岸了。他慢慢明白,原来高端的猎手往往以猎物的方式出现小剧场沈晚舟找到傅琛,大声质问他傅琛,22号晚上你在哪,在干什么?男人低笑,在你心里纵火呢!好你个芳心纵火犯!沈晚舟出示一张逮捕令怼他面前,傅队,你被...
每一个世界都不得好死云落翻翻白眼老娘不服...